skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhong, Haoran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A new method to determine the make and model of a vehicle from an automotive paint sample recovered at the crime scene of a vehicle-related fatality such as a hit-and-run using Raman microscopy has been developed. Raman spectra were collected from 118 automotive paint samples from six General Motors (GM) vehicle assembly plants to investigate the discrimination power of Raman spectroscopy for automotive clearcoats using a genetic algorithm for pattern recognition that incorporates model inference and sample error in the variable selection process. Each vehicle assembly plant pertained to a specific vehicle model. The spectral region between 1802 and 697 cm–1was found to be supportive of the discrimination of these six GM assembly plants. By comparison, only one of the six automotive assembly plants could be differentiated from the other five assembly plants using Fourier transform infrared spectroscopy (FT-IR), which is the most widely used analytical method for the examination of automotive paint) and the genetic algorithm for pattern recognition. The results of this study indicate that Raman spectroscopy in combination with pattern recognition methods offers distinct advantages over FT-IR for the identification and discrimination of automotive clearcoats. 
    more » « less